查看: 88570|回复: 272
收起左侧

[数算] 牛吃草问题秒杀绝技(原创)

  [复制链接]
发表于 13-10-17 15:29 | |阅读模式
   牛吃草,是一类趣味数学问题,也是公务员考试数量关系中的的常考题型。今天,老周给大家分享牛吃草问题的三种解法。及对牛吃草问题的本质进行剖析,帮助大家更彻底、更轻松地破解牛吃草问题。
完整文档,请点击帖后附件下载。
牛吃草问题的三种解法:
第一种,牛吃草问题周氏比例法-老周原创方法。如果用第二三种方法计算量大,用此法很有效。
第二种方程法。
第三种公式法。
所谓的列表法,老周就不介绍了,实质是公式法或方程法的模式化。
基本牛吃草

例1:有一块匀速生长的草场,27头牛6周可以吃完,或者23头牛9周可以吃完.若是21头牛,要几周才可以吃完?
A.10    B.11  C.12   D.15

第一种方法、周氏比例法解牛吃草问题:
步骤看起来很多,掌握了,实际上很容易  :)



第一步:把前二次的牛头数,时间的数字分两列写出来。
27      6
23  9
第二步:每两列数字相减,把结果写出来。4 与 3
第三步:二个差相除。4/3
第四步:求X.三点一线,把三数联起来进行运算,图中红线。按A-B*C=27-9*4/3=15 算出结果X。
第五步:求Y.根据基本公式(牛-X)天=Y,代入其中一排数据,比如第一排(27-15)*6=72
第六步:求结果。把X,Y,代入提问中,求出答案。(21-15)T=72  T=12

老周心语:老周看到有些牛吃草题目,用列方程或公式,计算较繁,所以在今年6月份,为大家发明了这么一个解法,可避开一些计算,更快的算出答案。实质是用比例法的思想解题,老周把这个牛吃草的解法,归在周氏比例法的系统中。此解法,后来被人盗用,并说成是他原创。老周表示,老周的原创解法欢迎大家转载,传播,但希望能尊重原创者,引用时注明出处。


老周精剖牛吃草问题:我们看此题,典型的牛吃草问题。草,是在不断生长的,它有生长的效率;牛,在努力吃草,它有吃草的效率。
牛吃草问题可以理解成为工程问题。牛有吃草的效率,草有生长的效率,而这个草场原有草量,就相当于工程总量。
每天的实际效率=牛吃草的效率-草生长的效率
工程总量=实际效率*时间=(牛吃草的效率-草生长的效率)* 时间
此题,我们知道牛的数量,但不知道牛的效率,工程总量(即原有草量)不知道,草的生长效率也不知道。题目缺乏条件,因为我们需要设值。假设每头牛每周吃1份草,假设草场每周长生草的效率是X份,设原有总草量是Y


以上题为例:


第二种方法:公式法。
27头牛吃的总草量=27*1 * 6
23头牛吃的总草量=23*1 *9

它们同样吃完一个草场的草,可为什么27*6 不等于 23*9 呢?
原因在于它们吃的时间不同,草在不断生长,前者草只生长了6周,后者,草生长了9周。

27*1 * 6 原有草量 + 6周生长的量
23*1 *9  原有草量 + 9周生长的量

所以它们所吃的草量的差距,就等于9-63周草生长的量,那么每一周草生长量=(23*9 – 27*6)/(9-6)
(或从解方程的角度,直接把第二式减第一式,推出草每周生长率的公式)

所以,我们可总结出每周草生长量的公式:
X=(1*时间1 - 2*时间2) / (时间1-时间2)

(其实求Y,也有公式,这个等下老周在下文的电梯类牛吃草问题中跟大家介绍。)

公式法解题三步:
第一步,根据公式求出X
第二步,根据牛吃草问题基本公式求出Y.
第三步,把X,Y代入问句,根据牛吃草基本公式,求出所问。
1X=(23*9 –27*6)/(9-6)=15
2Y=(23-15)*9=72
3(21-15)T=72  T=12

提醒:在典型牛吃草问题中,吃草时间长的吃的总草量,总是大于吃草时间短的吃的总草量。比如这题 23*927*6。因为吃的时间长,草生长的量也多。

第三种方法:方程法。
根据原工程总量=实际效率*时间=(牛吃草的效率-草生长的效率)* 时间
列方程:
(27*1 – X ) * 6 = Y
(23*1 – X ) * 9=Y
因为我们设每头牛每天吃1份,27头牛就是27
即(27-X* 时间6 原有草量Y


这也就是 (牛-X* 时间Y       这个牛吃草问题基本公式的来源。
这个基本公式,需牢记!
牛的头数 草每天的生长量,本来是不能直接相减的!
这里因为设牛每天吃一份,所以牛头数的数量才和这些个牛每天的效率的数字相同。

然后解方程
X=15   

Y=27-15*672          代入其中一式。根据(牛-X)天 基本公式
21-15* T =72             代入问句。根据(牛-X)天 基本公式
T=12



例二:有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天。那么它可供几头牛吃20天?
A.10    B.14   C.16    D.18

神算老周解析
第一种方法
12        25
24        10
12 /  15 4/5

1.X=12-10*4/5=4
2.Y=(24-4)10=200
3.(N-4)20=200  N=14   B.

第二种方法:
1.      X=(25*12 – 24*10)/)(25-10)=4
2.Y=(24-4)10=200
3.(N-4)20=200  N=14   B.

第三种列方程的解法,老周就不多说啦。
牛羊混杂型

例三:一块草地,每天生长的速度相同。现在这片牧草可供16头牛吃20天,或者供80只羊吃12天。如果1头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?

A.5   B.6  C.7    D.8

神算老周解析:
像这种牛羊混杂在一起的,先要统一成一种动物,牛或者羊。比如此题,我们统一成牛。80只羊等于20头牛,10头牛,60只羊相当于25头牛。
第一种方法:
16                20
20                12
4  /  8   1/2
X=16-12*1/2=10
Y=(16-10)20=120
(25-10)T=120  T=8  D.

第二种方法:
X=(16*20-20*12)/(20-12)=10
Y=(16-10)20=120
(25-10)T=120  T=8  D

排队问题


例四:某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。如果同时打开7个检票口,那么需多少分钟?

A.9     B.10    C.11      D.12

神算老周解析:排队问题,也是一类牛吃草问题。检票口相当于牛,队伍原来的长度相当于原有草量,每分钟来的旅客数相当于草的增长量。

第一种方法:

4          30
5          20
1   10   1/10
X=4-20*1/10=2
Y=(4-2)30=60
(7-2)T=60  T=12

第二种方法:
(30*4-20*5)/(30-20)=2
Y=(4-2)30=60
(7-2)T=60  T=12

多块地问题


例五:有三块草地,面积分别是4公顷、8公顷和10公顷。草地上的草一样厚而且长得一样快。第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周。问:第三块草地可供50头牛吃几周?
A.6   B.7   C.8    D.9

老周解析:多块地问题,是一类特殊的牛吃草问题,跟其它牛吃草问题不同。就是草的总量是不一样的。此类题目大家记住,这里的牛=牛头数/面积(牛吃草,牛是踩在草场上,草场在下面。咯样来记忆,别记反了!)。其它跟基本牛吃草问题解法一样。

第一种方法:
24/4     6
36/8    12
1.5      6   1/4
X=6-12*1/4=3
Y=(6-3)6=18
(50/10-3)T=18  T=9 D

第二种方法:
(4.5*12 –6*6) /( 12-6 ) =3
Y=(6-3)6=18
(50/10-3)T=18  T=9 D

例六:如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛?
A.50   B.46  C.38   D.35


神算老周解析:此题由于牛17/28-22/33 不好算,所以用第三种方法。
X=(17/28*84 – 22/33*54)/(84-54)= 1/2

Y=(22/33-1/2 )*54=9
(N/40-1/2)24=9  N=35 D.

行程问题(多人相遇、多人追及、电梯问题)


例七:有快、中、慢三辆车同时从同一地点出发,沿同一公路追赶路上的一个骑车人。这三辆车分別用6分钟、10分钟、12分钟追上骑车人。现在知道快车每小时走24千米,中速车每小时走20千米,那么,慢速车每小时走多少千米?
A.17   B.18    C.19   D.20

神算老周分析:前面,老周跟大家说过,牛吃草问题可理解成工程问题。实际上,也可理解成行程问题。甲乙两个人在走路,甲在乙前面,他们相距的距离就是原有草量,在前面的甲就是草场不断生长的草,在后面追的乙就是不断吃草的牛。跟牛吃草问题本质是一样的。

第一种解法:
24          6
20          10
4        /  4 =  1
X=24-10*1=14
Y=(24-14)6=60
(N-14)12=60  T=19


第二种解法:
X=(20*10-24*6)/(10-6)=14
Y=(24-14)6=60
(N-14)12=60  T=19
电梯型牛吃草



老周点睛:像此类电梯型的牛吃草问题,往往会要我们求扶梯的长度,也就是求Y,原有草量。在这里,老周再给大家一个公式。遇到此类题,用此公式,直接秒杀!
Y=(1-2) / (1/T1 - 1/T2)


例八:自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走 20 级梯级,女孩每分钟走 15 级梯级,结果男孩用了 5 分钟到达楼上,女孩用了 6 分钟到达楼上。问:该扶梯共有多少级?(

A. 80
B. 100
C. 120
D. 150

神算老周解析: 公式秒杀:Y=(20-15)(1/5-1/6)=5: 1/30 =150  D


下面我们用前面的两种解法来试试:

大家注意,在这里电梯是向上走的,人也是向上走,那么这里的“草生长速度”,即电梯增长速度,其实是呈一个负数。
它不是不断生长,而是不断消亡。这就是“草消亡”型的牛吃草问题。如果人往上走,电梯往下走,那么就是正常牛吃草。

第一种解法:
20   5
15   6
5  / 1= 5     X=20-6*5=-10   Y=(牛-X)天=(20-(-10))*5=150  选D

第二种解法:

(15*6-20*5)/(6-5)=-10   Y=(牛-X)天=(20-(-10))*5=150  选D


神算老周总结:牛吃草问题中,一般时间长的那个乘积它比较大,要放前面(此题即15*6放前面),如果时间长的那个乘积比较少,算出来结果会是一个负数,那就说明是草消亡型的牛吃草问题。

例九:自动扶梯以匀速自下而上行驶,甲每秒钟向上走1级梯,乙每秒钟向上走2级梯,结果甲30秒钟到达梯顶,乙20秒钟到达梯顶,该扶梯共有多少级?()

A.40    B.60  C.80   D.100

老周解析: 公式秒杀:Y=(2-1)(1/20-1/30)= 1: 1/60 =60  B.



速算小知识:1/A-1/B =(B-A)/AB  
比如 1/5-1/6=(6-5)/(5*6)=1/30      1/20-1/30=(30-20)/(20*30)=1/60

完整文档,请点击附件下载。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册会员

x

本帖被以下好帖子专辑推荐:

  • · 题库|主题: 2, 订阅: 0
 楼主| 发表于 13-10-17 16:20 |
发表于 13-10-17 16:27 |
顶一个!
 楼主| 发表于 13-10-17 16:28 |
发表于 13-10-17 16:42 |
顶起
发表于 13-10-17 16:44 |
谢谢楼主,分享了。
 楼主| 发表于 13-10-17 16:46 |

回 wdw7788 的帖子

wdw7788: 谢谢楼主,分享了。 (13-10-17 16:44) 返回原楼层
:)感谢分享。
发表于 13-10-17 16:46 |

回 zhouming8 的帖子

zhouming8:  (13-10-17 16:20) 返回原楼层
顶一个
发表于 13-10-17 16:57 |
mark,晚上回去看
 楼主| 发表于 13-10-17 17:05 |
发表于 13-10-17 17:08 |
友情提醒,排队问题那里T=12,改下
 楼主| 发表于 13-10-17 17:44 |

回 一辉呢 的帖子

一辉呢:友情提醒,排队问题那里T=12,改下 (13-10-17 17:08) 返回原楼层
谢谢!改过了。
发表于 13-10-17 19:05 |
先收藏啦
发表于 13-10-17 19:07 |
灰常好用
发表于 13-10-17 20:41 |
没看懂
发表于 13-10-17 22:01 |
多谢楼主分享,谢谢。
 楼主| 发表于 13-10-17 22:14 |

回 6rocks 的帖子

6rocks:多谢楼主分享,谢谢。 (13-10-17 22:01) 返回原楼层
加油!
发表于 13-10-17 22:44 |
大神
发表于 13-10-17 23:43 |
我最怕数量关系,哈哈赶紧收藏了
 楼主| 发表于 13-10-18 08:49 |

回 地一立方闽 的帖子

地一立方闽:我最怕数量关系,哈哈赶紧收藏了  (13-10-17 23:43) 返回原楼层
老朋友,感谢支持!

手机版|APP|sitemap|QZZN ( 京ICP备11040856号-1|京公网安备11010802022760 )

Powered by Discuz! , GMT+8, 19-8-22 02:59 0.038858 s, 10 queries , M On.

© 2005-2017 QZZN , 转载、商业使用需取得授权 联系我们

快速回复 返回顶部 返回列表