楼主: yippo
收起左侧

[经验] 2009年大笔经 行测申论NO.1秘笈

  [复制链接]
发表于 08-10-26 00:19 |
多谢楼主啊,好人!
发表于 08-10-26 00:27 |
保存
发表于 08-10-26 00:28 |
很不错的总结啊
发表于 08-10-26 00:30 |
谢谢,,下了
发表于 08-10-26 00:31 |
真的是好帖,帮DING 啊
发表于 08-10-26 00:39 |
这个贴不错
发表于 08-10-26 00:42 |
谢谢了,学学习
发表于 08-10-26 00:42 |
楼住不错啊
发表于 08-10-26 00:47 |
谢谢,期待其他部分
发表于 08-10-26 00:52 |
好人一定会有好报的,
发表于 08-10-26 01:02 |
3,2,7/2,12/5,(12/1)通分,3/1,6/2,差为质数数列。 麻烦LZ解析~~~谢谢
 楼主| 发表于 08-10-26 01:15 |
引用第30楼598568885于08-10-26 01:02发表的  :
3,2,7/2,12/5,(12/1)            通分,3/1,6/2,差为质数数列。 麻烦LZ解析~~~谢谢


应该为3,2,7/2,12/5,(12/1)            通分,3,2 变形为3/1,6/3,则各项分子、分母差为质数数列。
发表于 08-10-26 01:16 |
这个还是很有意义的,楼主是好人
 楼主| 发表于 08-10-26 01:19 |
第三部分、判断推理
最关键的地方,看清题目,问的是不能还是能,加强还是削弱(是否有“除了”这个词)

一.最多与最少
概念之间的关系主要可以分为三大类:

一是包含,如“江苏人”与“南京人”;
二是交叉,如“江苏人”与“学生”;
三是全异,如“江苏人”与“北京人”。
全异的人数最多,全包含的人数最少,以下面例子为例。

例1:房间里有一批人,其中有一个是沈阳人,三个是南方人,两个是广东人,两个是作家,三个是诗人。如果以上介绍涉及到了房间中所有的人,那么,房间里最少可能是几人,最多可能是几人?
析:广东人是南方人,所以三个南方人和两个广东人,其实只有3个人。现考虑全异的情况,即沈阳人,南方人,都不是作家和诗人,这样人数会最多。1+3+2+3=9,最多9人。现考虑全包含的情况,假设南方人中,3个全是诗人,有两个是广东人,有两个南方人是作家,已经占3个人了;这样沈阳人也是1人,即最少有4人。(本题最容易忽略的是,南方人有可能既是作家,又是诗人,最少的就是把少的包在多的中)

例2:某大学某某寝室中住着若干个学生,其中,1个哈尔滨人,2个北方人,1个是广东人,2个在法律系,3个是进修生。因此,该寝室中恰好有8人。以下各项关于该寝室的断定是真的,都能加强上述论证,除了
A、题干中的介绍涉及了寝室中所有的人。
B、广东学生在法律系。
C、哈尔滨学生在财经系。
D、进修生都是南方人。
析:本题,哈尔滨人是北方人,则寝室最多的人数是:2+1+2+3=8人,因为寝室正好8人,所以,北方人,广东人,法律系,进修生,全部是相异的,一旦有交叉,必然造成寝室人数少于8人。所以选B

二.应该注意的几句话
1.
不可能所有的错误都能避免

不可能所有的错误都能避免,怎么理解?
A.     可能有的错误不能避免  B.必然有的错误不能避免。
答案是B,不可能所有的错误都能避免,说明了至少存在一个例子错误是不能避免的,可能有一个例子,可能有很多个例子,即必然有的错误不能避免。可能有的错误不能避免,只是可能,说明有可能所有的错误都能避免。

2.
A.  妇女能顶半边天,祥林嫂是妇女,所以,祥林嫂能顶半边天。
此句话推理有误。因为妇女能顶半边天的妇女是全集合概念,与祥林嫂是妇女中的妇女的概念不一至。类似于,孩子都是祖国的花朵,花朵都需要浇水,所以孩子都需要浇水。又,鲁迅的小说不是一天能读完的,《呐喊》是鲁迅的小说,所以,《呐喊》不是一天能读完的。错误,因为前面小说是相对鲁迅所有小说,集合的概念,后项是非集合概念。
2.
B.  对网络聊天者进行了一次调查,得到这些被调查的存不良企图的网络聊天者中,一定存在精神空虚者。

那么能不能得出“存在不良企图网络聊天者中一定有精神空虚者”呢?答案是否定的,因为要得出的结论是全集的概念,而题干只是针对调查者。
2.
C.  对近三年刑事犯调查表明,60%都为己记录在案的350名惯犯所为。报告同时揭示,严重刑事犯罪案件的作案者半数以上是吸毒者。

那么能不能得出“350名惯犯中一定有吸毒者”呢?不能。因为60%是指案件,而半数指的是作案者。假如案件有1000个案犯,其中350名惯犯做了600件案子,其他650名案犯才做了400件案子,那么如果650名全部吸了毒,而350全不吸毒,也符合严重刑事犯罪案件的作案者半数以上是吸毒者(65%吸了毒)。另外一种说法,严重刑事犯罪案件的作案案件半数中一定有案件是350名惯犯里的人做的,这个就正确了。

3.或者,或者 要么,要么
或者A,或者B 这个关联词表示,可能是A成立,可能是B成立,可能是A/B都成立。
例如,鲁迅或者是文学家,或者是革命家。表示,鲁迅可能是文学家,可能是革命家,可能是文学革命家。
如果是要么,要么,则只有两个可能性,文学家,和革命家。

4.并非某女年轻漂亮/(并非毛泽东既是军事家,又是文学家)
这句话表示,某女可能年轻不漂亮,可能漂亮不年轻,可能即不漂亮也不年轻。
毛泽东可能是军事家不是文学家,可能是文学家但不是军事家,可能既不是军事家也不是文学家。

5.A:我主张小王和小孙至少提拔一人 B:我不同意
B的意思是,小王和小孙都不提拔。因为如果提拔任何一人,都满足了A的话,即同意了A。

6.如果天下雨,那么地上湿。类似的短语(只要,就;如果,那么;一,就)
第一,现在天下雨了,那么地上湿不湿呢?湿
第二,现在天没下雨,地上湿不湿呢?不一定
第三,现在地上湿了,天有没有下雨呢?不一定
第四,现在地上没湿,天有没有下雨呢?没有。

7.只有天下雨,地上才会湿。类似的短语(除非,才;没有,就没有;不,就不)
表示的含义    1.天下雨,地不一定会湿。 2.天不下雨,地一定不会湿。

8.A:所有的同学都是江苏人;B:不同意
B 的意思是,必然有同学不是江苏人,但可以全部都不是江苏人,也可以是有部分同学不是江苏人。

9.发牢骚的人都能够不理睬通货膨胀的影响。
这句话意思是,只要是发牢骚的,就能不理睬通货膨胀的影响。
但,不理睬通货膨胀的影响的人,不一定是发牢骚的人。

10.所有的贪污犯都是昌吉人;所有的贪污犯都不是昌吉人。
第一句话,不能理解为,所有昌吉人都是贪污犯人。但只要是贪污犯,都是昌吉人。
第二句话,可以理解为,所有的昌吉人都不是贪污犯。因为一旦昌吉人是贪污犯,则不是昌吉人,所以昌吉人不可能是贪污犯。即所有昌吉人都不是贪污犯。

11.主板坏了,那么内存条也一定出了故障。
这种假设命题,除非能证明,“主板坏了,那么内存条不一定/没出故障。”否则,不能认为主板就一坏了。也就是即使主板确定是好好的,这个命题也是真的。

12.推理方式的正确性
题目给的是:所有的读书人都有熬夜的习惯,张目经常熬夜,所以,张目一定是读书人。
这个命题是不一定准确的。
选项:所有的素数都是自然数,91是自然数,所以91是素数。
这个命题是错误的,因为91是复数,由此,题目推理方式不同。
有时的题目是,题干正确,那么也要选正确的。

13.除非谈判马上开始,否则有争议的双方将有一方会违犯停火协议。
谈谈马上开始了,能保证有争议的双方不会有一方违犯停火协议吗?答案是不能。题目意思是说,只有谈判马上开始,有争议的双方才能不会有一方违犯停火协议。只是停火的条件。  

14.正确的三段论和错误的三段论
正确的三段论:
所有的聪明人都近视,
有些学生是聪明人,
有些学生近视。
错误的三段论如:
所有的聪明人都近视,
有些学生不聪明,
有些学生不近视。

三.充分必要条件万能宝典
A
=>B,表示,A是B成立的充分条件,B是A成立的必要条件。A能推出B,B成立却不一定推出A成立。没有B就没有A,不是B就决不会有A,只要A成立,B一定要成立。
A=>B,B=>C,则A=>C。

1.只有博士,才能当教授。只有通过考试,才能当博士。
不是博士,不能当教授。博士是当教授的必要条件,教授一定是博士,博士不一定是教授。
1式:教授=》是博士
不通过考试,不能当博士。通过考试是当博士的必要条件,博士一定通过考试,通过考试不一定是博士,可能还要其它条件。
2式:是博士=》通过了考试
联合得,教授=》通过了考试

2.只有住在广江市的人才能够不理睬通货膨胀的影响;如果住在广江市,就得要付税;每一个付税的人都要发牢骚。
根据上述判断,可以推出以下哪项一定是真的?
(1)每一个不理睬通货膨胀影响的人都要付税。
(2)不发牢骚的人中没有一个能够不理睬通货膨胀的影响。
(3)每一个发牢骚的人都能够不理睬通货膨胀的影响  
析:第一句话,说明,不理睬=》广江市;第二句,广江=》付税;第三句,付税=》发牢骚。则  不理睬=》  在广江市  =》  付税   =》   发牢骚
由此,(1),可得之。(2),发牢骚是不理睬的必要条件,不发牢骚,就不能不理睬。
(3),只有发牢骚,才能不理睬。但发牢骚了,不代表不理睬。 则选(1)(2)

四.加强、削弱、和前提

1审题 要分辨题目是加强还是削弱还是前提,看清题意(有没有“除了”这些字眼),不要看到一个选项就自以为是选上,实际上和题目要求相反。
另一个重点是,分清问的是什么?论据,论证,论点
论点是统帅,解决“要证明什么”的问题;论据是基础,解决“用什么来证明”的问题;论证是达到论点和论据同意的桥梁。
答题时要审好题目,题意是要加强/削弱什么?论据,论证,还是观点。

例:
有一句话,“学雷锋不好!因为雷锋以前就是个贪图小便宜、损人利己的坏人。如果学了雷锋,那么就没时间学习科学知识,就没时间进行自我修养。”
其中,学雷锋不好是我的论点,雷锋以前是什么样的人是我的论据。学了雷锋就怎样怎样这一推断过程,算是我的论证。
要反驳削弱,如果你直接咬住“学雷锋不好”这一错误观点,来批驳我,就是驳论点;如果你列举真实的雷锋事迹,来批驳我关于雷锋是什么样的人的论据,就是驳论据;如果你找出我的逻辑错误或者论述过程中的结果错误,来批驳我,就是驳论证。  

2.解削弱型
解答此类试题,一般要先弄清楚题干所描述的论点、论据和论证的关系。如果是削弱结论,则从题干所描述的论点的反向思考问题,一般就是找论点的矛盾命题,或是与论点唱反调的命题;如果是削弱论证,则主要从论点和论据之间的逻辑关系方面思考问题;如果是削弱论据,则从论据的可靠性角度试考问题。
如果题目是不能削弱,则是要找出,和论据/论证/论点 不相干的一项或者加强的一项。

五.一些题型  
1.这种判断甲乙丙是谁的题,从出现过两次的那个人入手。
例:世界田径锦标赛3000米决赛中,跑在最前面的甲、乙、丙三人中,一个是美国选手,一个是德国选手,一个是肯尼亚选手,比赛结束后得知:
(1)甲的成绩比德国选手的成绩好。
(2)肯尼亚选手的成绩比乙的成绩差。
(3)丙称赞肯尼亚选手发挥出色。
则,甲,乙,丙分别是?
析:(2),(3)中,肯尼亚出现两次,从此切入,肯尼亚不是乙,肯尼亚不是丙,则肯尼亚是甲。又由1,肯尼亚比德国成绩好,肯尼亚又比乙差,则德国不是乙,是丙。美国是乙。

2.定义判断的注意事项
定义判断一定要注意,题目问的是不属于,还是属于。
定义判断一般是判断是否属于“属”,再看是否符合“种差”。

注:逻辑推理可以通过MBA逻辑书籍进行超级强化。
发表于 08-10-26 01:20 |
日期题目2100-2-9,2100-2-13,2100-2-18,2100-2-24,(2100-3-3)
2100-3-2吧?  请教~~
 楼主| 发表于 08-10-26 01:36 |
引用第34楼598568885于08-10-26 01:20发表的  :
日期题目2100-2-9,2100-2-13,2100-2-18,2100-2-24,(2100-3-3)
2100-3-2吧?  请教~~

2100年是平年(整百年需被400除尽,才是闰年),2月份只有28天。日期间差距是:4,5,6,7
发表于 08-10-26 01:45 |
9.明显的重心问题

重心变化,下,中,上    下,中,(上),选C
正三角形的重心在中吧??选A?请教LZ~~
 楼主| 发表于 08-10-26 01:49 |
引用第36楼598568885于08-10-26 01:45发表的  :
9.明显的重心问题

重心变化,下,中,上    下,中,(上),选C
正三角形的重心在中吧??选A?请教LZ~~

此题较有争议,李永新的书是选C。个人也认为选C,因为C也较符合上面大,下面小的特点
 楼主| 发表于 08-10-26 01:55 |
第四部分、数学运算上 注:目前图片空间已经收费了,现在不能外链了,也找不到其它的可以外链的空间。现在只能下载首楼的附件才能看到图片了。。


(注意运算不要算错,看错!!!越简单的题,越要小心陷阱)

一.排列组合问题

1.    能不用排列组合尽量不用。用分步分类,避免错误

2.    分类处理方法,排除法。

例:要从三男两女中安排两人周日值班,至少有一名女职员参加,有(C1/2 *C1/3 +1)种不同的排法?
析:当只有一名女职员参加时,C1/2* C1/3;

当有两名女职员参加时,有1种

3.特殊位置先排

      例:某单位安排五位工作人员在星期一至星期五值班,每人一天且不重复。若甲忆两人都不能安排星期五值班,则不同的排班方法共有(3 * P4/4)
      析:先安排星期五,后其它。

4. 相同元素的分配(如名额等,每个组至少一个),隔板法。

      例:把12个小球放到编号不同的8个盒子里,每个盒子里至少有一个小球,共有(C7/11)种方法。
      析:0 0 0 0 0 0 0 0 0 0 0 0 ,共有12-1个空,用8-1个隔板插入,一种插板方法对应一种分配方案,共有C7/11种,即所求。
      注意:如果小球也有编号,则不能用隔板法。  

5. 相离问题(互不相邻)用插空法

      例:7人排成一排,甲、乙、丙3人互不相邻,有多少种排法?
      析:| 0 | 0 | 0 | 0 |,分两步。第一步,排其它四个人的位置,四个0代表其它四个人的位置,有P4/4种。第二步,甲乙丙只能分别出现在不同的 | 上,有P3/5种,则P4/4 * P3/5即所求。

      例:在一张节目表中原有8个节目,若保持原有的相对顺序不变,再增加三个节目,求共有多少种安排方法?
      析:思路一,用二次插空法。先放置8个节目,有9个空位,先插一个节目有9种方法,现在有10个空位,再插一个节目有10种方法,现有11种空位,再插一种为11种方法。则共有方法9*10*11。
      思路二,可以这么考虑,在11个节目中把三个节目排定后,剩下的8个位置就不用排了,因为8个位置是固定的。因此共有方法P3/11  

6. 相邻问题用捆绑法
      例:7人排成一排,甲、乙、丙3人必须相邻,有多少种排法?
      析:把甲、乙、丙看作整体X。第一步,其它四个元素和X元素组成的数列,排列有P5/5种;第二步,再排X元素,有P3/3种。则排法是P5/5 * P3/3种。  

7. 定序问题用除法

      例:有1、2、3,...,9九个数字,可组成多少个没有重复数字,且百位数字大于十位数字,十位数字大于个位数字的5位数?
      析:思路一:1-9,组成5位数有P5/9。假设后三位元素是(A和B和C,不分次序,ABC任取)时(其中B>C>A),则这三位是排定的。假设B、C、A这个顺序,五位数有X种排法,那么其它的P3/3-1个顺序,都有X种排法。则X*(P3/3-1+1)=P5/9,即X=P5/9 / P3/3
      思路二:分步。第一步,选前两位,有P2/9种可能性。第二步,选后三位。因为后三位只要数字选定,就只有一种排序,选定方式有C3/7种。即后三位有C3/7种可能性。则答案为P2/9 * C3/7

8. 平均分组

例:有6本不同的书,分给甲、乙、丙三人,每人两本。有多少种不同的分法?
析:分三步,先从6本书中取2本给一个人,再从剩下的4本中取2本给另一个人,剩下的2本给最后一人,共C2/6* C2/4 * C2/2

例:有6本不同的书,分成三份,每份两本。有多少种不同的分法?
析:分成三份,不区分顺序,是无序的,即方案(AB,CD,EF)和方案(AB,EF,CD)等是一样的。前面的在(C2/6* C2/4 * C2/2)个方案中,每一种分法,其重复的次数有P3/3种。则分法有,(C2/6* C2/4 * C2/2) /   P3/3 种分法。

二.日期问题

1.闰年,2月是29天。平年,28天。

2.口诀:
平年加1,闰年加2;(由平年365天/7=52余1得出)。

例:2002年 9月1号是星期日  2008年9月1号是星期几?
因为从2002到2008一共有6年,其中有4个平年,2个闰年,求星期,则:
4X1+2X2=8,此即在星期日的基础上加8,即加1,第二天。

例:2004年2月28日是星期六,那么2008年2月28日是星期几?  
4+1=5,即是过5天,为星期四。(08年2 月29日没到)


三.集合问题

1.两交集通解公式(有两项)

公式为:满足条件一的个数+满足条件二的个数-两者都满足的个数=总个数-两者都不满足的个数
其中满足条件一的个数是指 只满足条件一不满足条件二的个数 加上 两条件都满足的个数  公式可以画图得出

例:有62名学生,会击剑的有11人,会游泳的有56人,两种都不会用的有4人,问两种都会的学生有多少人?  
思路一:两种都会+只会击剑不会游泳+只会游泳不会击剑=62-4  
设都会的为T,11-T+56-T+T=58,求得T=9  
思路二:套公式,11+56-T=62-4,求得T=9  

例:对某小区432户居民调查汽车与摩托车的拥有情况,其中有汽车的共27户,有摩托车的共108户,两种都没有的共305户,那么既有汽车又有摩托车的有多少户?

析:套用公式27+108-T=432-305 得T=8

2.三交集公式(有三项)
例:学校教导处对100名同学进行调查,结果有58人喜欢看球赛,有38人喜欢看戏剧,有52人喜欢看电影。另外还知道,既喜欢看球赛又喜欢看戏剧(但不喜欢看电影)的有6人,既喜欢看电影又喜欢看戏剧(但不喜欢看球赛)的有4人,三种都喜欢的有12人,则只喜欢看电影的人有多少人?
      
如图, U=喜欢球赛的 + 喜欢戏剧的 + 喜欢电影的  
X表示只喜欢球赛的人; Y表示只喜欢电影的人; Z表示只喜欢戏剧的人  
T是三者都喜欢的人。即阴影部分。
a表示喜欢球赛和电影的人。仅此2项。不喜欢戏剧
b表示喜欢电影和戏剧的人。仅此2项。不喜欢球赛
c表示喜欢球赛和戏剧的人。仅此2项。不喜欢电影。  
A=X+Y+Z,B=a+b+c,A是只喜欢一项的人,B是只喜欢两项的人,T是喜欢三项的人。  
则U=喜欢球赛的 + 喜欢戏剧的 + 喜欢电影的 = (x+a+c+T) + (y+a+b+T) + (z+b+c+T)
整理,即
A+2B+3T=至少喜欢一项的人数人
又:A+B+T=人数
再B+3T= 至少喜欢2项的人数和  

原题解如下:  
A+2*(6+4+c)+3*12=58+38+52  
A+(6+4+c)+12=100  
求得c=14  
则只喜欢看电影的人=喜欢看电影的人数-只喜欢看电影又喜欢球赛的人-只喜欢看电影又喜欢看戏剧的人-三者都喜欢的人=52-14-4-12=22人  


四.时钟问题
1.时针与分针
分针每分钟走1格,时针每60分钟5格,则时针每分钟走1/12格,每分钟时针比分针少走11/12格。

例:现在是2点,什么时候时针与分针第一次重合?
析:2点时候,时针处在第10格位置,分针处于第0格,相差10格,则需经过10 /  11/12 分钟的时间。

例:中午12点,时针与分针完全重合,那么到下次12点时,时针与分针重合多少次?
析:时针与分针重合后再追随上,只可能分针追及了60格,则分针追赶时针一次,耗时60 / 11/12 =720/11分钟,而12小时能追随及12*60分钟/ 720/11 分钟/次=11次,第11次时,时针与分针又完全重合在12点。如果不算中午12点第一次重合的次数,应为11次。如果题目是到下次12点之前,重合几次,应为11-1次,因为不算最后一次重合的次数。
2.分针与秒针
秒针每秒钟走一格,分针每60秒钟走一格,则分针每秒钟走1/60格,每秒钟秒针比分针多走59/60格  
例:中午12点,秒针与分针完全重合,那么到下午1点时,两针重合多少次?
析:秒针与分针重合,秒针走比分针快,重合后再追上,只可能秒针追赶了60格,则秒针追分针一次耗时,60格/ 59/60格/秒= 3600/59秒。而到1点时,总共有时间3600秒,则能追赶,3600秒 / 3600/59秒/次=59次。第59次时,共追赶了,59次*3600/59秒/次=3600秒,分针走了60格,即经过1小时后,两针又重合在12点。则重合了59次。
3.时针与秒针
时针每秒走一格,时针3600秒走5格,则时针每秒走1/720格,每秒钟秒针比时针多走719/720格。
例:中午12点,秒针与时针完全重合,那么到下次12点时,时针与秒针重合了多少次?  
析:重合后再追上,只可能是秒针追赶了时针60格,每秒钟追719/720格,则要一次要追60 / 719/720=43200/719 秒。而12个小时有12*3600秒时间,则可以追12*3600/43200/719=710次。此时重合在12点位置上,即重合了719次。
4.成角度问题
例:在时钟盘面上,1点45分时的时针与分针之间的夹角是多少?

析:一点时,时针分针差5格,到45分时,分针比时针多走了11/12*45=41.25格,则分针此时在时针的右边36.25格,一格是360/60=6度,则成夹角是,36.25*6=217.5度。  

5.相遇问题  
例:3点过多少分时,时针和分针离“3”的距离相等,并且在“3”的两边?
  
析:作图,此题转化为时针以每分1/12速度的速度,分针以每分1格的速度相向而行,当时针和分针离3距离相等,两针相遇,行程15格,则耗时15 / (1+ 1/12 )=180/13分。  

例:小明做作业的时间不足1时,他发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。小明做作业用了多少时间?  
析:

只可能是这个图形的情形,则分针走了大弧B-A,时针走了小弧A-B,即这段时间时针和分针共走了60格,而时针每分钟1/12格,分针1格,则总共走了60/ (1/12+1)=720/13分钟,即花了720/13分钟。  

五.方阵问题

1
、方阵外一层总人数比内一层的总人数多8
2
、每边人数与该层人数关系是:最外层总人数=(边人数-1)×4  
3
、方阵总人数=最外层每边人数的平方
4
、空心方阵的总人(或物)数=(最外层每边人(或物)数-空心方阵的层数)×空心方阵的层数×4
5
、去掉一行、一列的总人数=去掉的每边人数*2-1
例:某校的学生刚好排成一个方阵,最外层的人数是96人,问这个学校共有学生?
析:最外层每边的人数是96/4+1=25,刚共有学生25*25=625
例:五年级学生分成两队参加学校广播操比赛,他们排成甲乙两个方阵,其中甲方阵每边的人数等于8,如果两队合并,可以另排成一个空心的丙方阵,丙方阵每边的人数比乙方阵每边的人数多4人,甲方阵的人数正好填满丙方阵的空心。五年级参加广播操比赛的一共有多少人?

析:设乙最外边每人数为Y,则丙为Y+4.
8*8+Y*Y+8*8=(Y+4)(Y+4)
求出Y=14,则共有人数:14*14+8*8=260

例:明明用围棋子摆成一个三层空心方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少棋子?摆这个三层空心方阵共用了多少个棋子?
析:最外层有(15-1)*4=56个。则里二层为56-8*2=40
应用公式,用棋子(15-3)*3*4=144

六.几何问题

1.公式



补:扇形面积=1/2*r*l    其中r为半径,l为弧长。


2.两三角形,有一角成互补角,或者有一角重合的面积关系。


1中,Sabc / Scde=BC/CE * AC/CD
2中,Sabc / Sade=AB/AD * AC/AE (皆可通过作高,相似得到
)

例: 如图,三角形ABC的面积为1,并且AE=3ABBD=2BC,那么△BDE的面积是多少?

Sbde=Sabc * BE/AB * BD/BC =1 * 2 * 2 =4  

例: 例4 如下图,将凸四边形ABCD的各边都延长一倍至 A′、B′、 C′、D′,连接这些点得到一个新的四边形A′B′C′D′,若四边形A′B′C′D′的面积为30平方厘米,那么四边形ABCD的面积是多少?
  
Sa’ad’+Sb’cc’=2*Sabcd
同理
Sa’b’b+Sdc’d’=2Sabcd
Sabcd=30/(2+2+1)=6

3.圆分割平面公式
公式为:N^2-N+2,其中N为圆的个数。

一个圆能把平面分成两个区域,两个圆能把平面分成四个区域,问四个圆能最多把平面分成多少个区域?
(4^2-4+2 )

4.最大和最小
1)等面积的所有平面图形当中,越接近圆的图形,其周长越小。
2)等周长的所有平面图形当中,越接近圆的图形,其面积越大。
以上两条定理是等价的。
3)等体积的所有空间图形当中,越接近球体的几何体,其表面积越小。
4)等表面积的所有空间图形当中,越接近球体的几何体,其体积越大。
以上两条定理是等价的。  

例:相同表面积的四面体,六面体,正十二面体及正二十面体,其中体积最大的是:
A 四面体  B 六面体  C 正十二面体  D 正二十面体
  
析:显然,正二十面体最接近球体,则体积最大。
  

5.一个长方体形状的盒子长、宽、高分别为20厘米、8厘米和2厘米,现在要用一张纸将其六个面完全包裹起来,要求从纸上剪下的部分不得用作贴补,请问这张纸的大小可能是下列哪一个?   
  
A.长25厘米、宽17厘米            B.长26厘米、宽14厘米

C.长24厘米、宽21厘米            D.长24厘米、宽14厘米
  
析:这种题型首先的思路应该是,先算盒子的总面积=2*(20*8+20*2+8*2)=432,除了C其它都小于432


七.比例问题、十字相乘法与浓度问题

1.十字相乘法
一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设AXB有(1-X)。则C1

得式子,A*X+B*(1-X)
C*1
整理得
X=C-B / A-B   1-X=A-C / A-B
则有
X : (1-X)=C-B / A-C
计算过程写为


X        A          C-B        

  
         C  

1-X      B          A-C         (一般大的写上面A, 小的B
)

例:某体育训练中心,教练员中男占90%,运动员中男占80%,在教练员和运动员中男占82%,教练员与运动员人数之比是
  
析:一个集合(教练员和运动员的男性),只有2个不同的取值,部分个体取值(90%,剩余部分取值为82%,平均值为82%
  
教练员
   90%         2%         
              82%                 = 1:4  
运动员
   80%         8%            

例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:
  
析:男生平均分X,女生
1.2X  
1.2X         75-X        1
       75            =  
X           1.2X-75     1.8  
X=70 女生为
84

  

2.浓度问题

溶液的重量=溶质的重量+溶剂的重量

浓度=溶质的质量 / 溶液质量

浓度又称为溶质的质量分数。


关于稀释,加浓,配制。其中混合后的浓度为
P.
稀释,一溶液加水,相当于aP1%的溶液,和b0%的溶液配制。

P1           P        a  
       P
0            P1-P      b

加浓,相当于ap1%的溶液,和b100%的溶液配制。

P1          P-100    a
       P
100         P1-P     b

配制则是aP1%的溶液,和bP2%的溶液配制。

可列以下十字相乘:

P1        P-P2      a
     P
P2        P1-P      b  

注:有些题不用十字相乘法更简单。

  

例:有含盐15%的盐水20千克,要使盐水含盐20%,需加盐多少千克?

析:

15            80       20
       20
100           5        b

80/5=20/b
b=1.25g  

例:从装满100g浓度为80%的盐水杯中倒出40g盐水后再倒入清水将杯倒满,这样反复三次后,杯中盐水的浓度是()

A.17.28%    B.28.8%      C.11.52%    D.48%  
析:开始时,溶质为80。第一次倒出40g,再加清水倒满,倒出了盐80*40%,此时还剩盐80*60%。同理,第二次,剩80*60%*60%。第三次,乘80*60%^3=17.28g,即浓度为17.28%  

特例:有甲乙两杯含盐率不同的盐水,甲杯盐水重120克,乙杯盐水重80克.现在从两杯倒出等量的盐水,分别交换倒入两杯中.这样两杯新盐水的含盐率相同.从每杯中倒出的盐水是多少克?
  
析:设甲浓度P1,乙浓度P2。混合后的相等浓度为P.拿出的等量的水为
a  
则对于甲

P1       P-P2      120-a
       P
P2       P1-P      a  

对于乙

P2         P-P1      80-a
      P           
P1         P2-P      a

120-a       a  
     :       =      :
   a             80-a  
a=120*80 / 120+80  

一般地,对于质量为m1,m2的溶液,也有
a=m1*m2  /  (m1+m2)  





 楼主| 发表于 08-10-26 01:55 |
第四部分、数学运算中

八.数、整除、余数与剩余定理
1.数的整除特性

4整除:末两位是4的倍数,如16,216,936…
8整除:末三位是8的倍数,如14421443152
9整除:每位数字相加是9的倍数,如,81936549
1       1整除:奇数位置上的数字和与偶数位置上的数字和之间的差是11的倍数。  如,1212319295
如果数AC整除,数BC整除,则,A+B 能被C整除 ; A*B也能被C整除  
如果A能被C整除,A能被B整除,BC互质,则A能被B*C整除。  

例:有四个自然数ABCD,它们的和不超过400,并且A除以B商是55A除以C商是66A除以D商是77。那么,这四个自然数的和是:  
析:A除以B商是55B5倍是5的倍数,55的倍数,则A5的倍数,同理A6的倍数,A7的倍数,则A为最小公倍数,210,此题得解。  
2.剩余定理
原理用个例子解释,一个数除以32,那么,这个数加3再除以3,余数还是2.  
一个数除以53,除以43,那么这个数加上54的公倍数 所得到的数,除3还是能得到这个结论。  

例:一个三位数除以97,除以52,除以43,这样的三位数共有()  
析:7是最小的满足条件的数。954的最小公倍数为180,则187是第二个这样的数,3675477279075个三位数。  
例:有一个年级的同学,每9人一排多5人,每7人一排多1人,每5人一排多2人,问这个年级至少有多少人?  
析:题目转化为,一个数除以95,除以71,除以52。第一步,从最大的数开刀,先找出除以95的最小数,14     第二步,找出满足每9人一排多5人,每7人一排多1人的最小的数。14除以7不余1;再试14+9这个数,23除以7照样不余1;数取14+9*4时,50除以71,即满足每9人一排多5人,每7人一排多1人的最小的数是,50    第三步,找符合三个条件的。50除以5不余2,再来50+6397的最小公倍数)=123,除5仍不余2;再来,50+126,不余2;……当50+63*4时,余2,满足3个条件,即至少有302个人。
例:自然数P满足下列条件:P除以10的余数为9P除以9的余数为8P除以8的余数为7.如果100<P<1000,则这样的P有几个?
析:此题可用剩余定理。但有更简单的,
P+110的倍数
P+19的倍数
P+18的倍数
1-1000内,1098的公倍数为,360,720,则P359,719

3.84*86=?
出现如AB*AC=?,其中B+C=10,计算结果为:百位数为A(A+1),十位/个位数为:B*C。注:如果B*C小于10,用0补足。如:29*21,百位数为2*3=6,个倍数为1*9=9,则结果为609.

4.根号3,3次根号下5,哪个小?

这类题,关键是用一个大次的根号包住两个数。一个是2次根号,一个是3次根号,则应该用6次根号包住它们。根号3,可以化成6次根号下27;3次根号下5,可化为6次根号下25,则根号3大于3次根号下5.

九.等差数列  
性质:
1)等差数列的平均值等于正中间的那个数(奇数个数或者正中间那两个数的平均值(偶数个数)
2)任意角标差值相等的两个数之差都相等,即
A(n+i)-An=A(m+i)-Am
例:{an}是一个等差数列,a3+a7-a10=8,a11-a4=4,则数列前13项之和是:
A3-a10=A4-A11=-4
这道题应用这两个性质可以简单求解。
因此A7=8+4=12,而这13个数的平均值又恰好为正中间的数字a7,因此这13个数的和为  12×13=156

十.抽屉问题
解这类题的关键是,找出所有的可能性,然后用最不利的情况分析。

例:一个布袋中由35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?
析:最不利的情况是,取出3个蓝色球,又取了2个绿色球,白、黄、红各取3个,这个时候再取一个就有4个是同一颜色的球了。即取:3+2+3*3+115个球。
例:从1234……、1212个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7    重点   
:考虑到这12个自然数中,满足差为7的组合有,(125),(114),(103),(92),(81),共五种,还有6,7两个数没有出现过,则最不幸的情况就是,(125)等都取了一个,即五个抽屉取了五个,还有6,7各取一个,再取一个就有两个数差为7了,则取了5+2+1=8个。
例:学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)。问:至少有多少名学生,才能保证有不少于5名同学参加学习班的情况完全相同
析:不同的情况有,都不参加、参加语文、参加数学、参加美术、参加语文和数学、参加语文和美术、参加数学和美术,最不幸的情况是,4组人都参加了这7项,共28项,这样,再加入1人,即29人时,满足题意。

  
十一.函数问题
这种题型,土方法就是找一个简单的数代入。
X^3+Y^3=(x+y)(x^2-xy+y^2)
1.     求值
例:已知f(x)=x^2+ax+3,若f(2+x)=f(2-x),则f(2)是多少?
析:既然f(2+x)=f(2-x),当x=2时,方程成立,即f(4)=f(0),求得a=-4,得解。
例:f(x*y)=f(x)*f(y);f(1)=0,求f(2008)=?
析:f(2008*1)=f(2008)*f(1)=0
例:f(x+1)= -1/f(x),f(2)=2007.f(2007)=?
析:f(3)=-1/f(2)=1/2007,f(4)=-1/-1/2007=2007,f(5)=-1/2007,则f(2007)=-1/2007
例:f(2x-1)=4*X^2-2x,求f(x)
析:设2x-1=u,则x=u+1 / 2,则f(u)=4* ((u+1)/2)^2-2*(u+1)/2 =u^2+u 所以f(x)=x^2+x

2.求极值
例:某企业的净利润y(单位:10万元)与产量x(单位:100万件)之间的关系为y=-x^2+4*x+1,问该企业的净利润的最大值是多少万元?(  )
A. 10  B.20  C.30  D.50
析:y=-(x-2)^2+5,则y最大值为5。净利润为50万元。可以配方的。
例:某企业的净利润y(单位:10万元)与产量x(单位:100万件)之间的关系为y=-1/3x^3+x^2+11/3,问该企业的净利润的最大值是多少万元?(  )
A 5  B 50 C 60 D70
析:这道题要求导,公式忘光了, y=-1/3*3*x^2+2*x+0=0,解得x=2,则代入y得5。求导公式好像是-1/3x^3=3*(-1/3)*x^2,常数为0。不能配方的,极值试求导,不会做只能放弃。

十二、比赛问题

1. 100名男女运动员参加乒乓球单打淘汰赛,要产生男女冠军各一名,则要安排单打赛多少场?( )
【解析】在此完全不必考虑男女运动员各自的人数,只需考虑把除男女冠军以外的人淘汰掉就可以了,因此比赛场次是100-2=98(场)。
2. 某机关打算在系统内举办篮球比赛,采用单循环赛制,根据时间安排,只能进行21场比赛,请问最多能有几个代表队参赛?( )
【解析】根据公式,采用单循环赛的比赛场次=参赛选手数×(参赛选手数-1)/2,因此在21场比赛的限制下,参赛代表队最多只能是7队。
3. 某次比赛共有32名选手参加,先被平均分成8组,以单循环的方式进行小组赛;每组前2名队员再进行淘汰赛,直到决出冠军。请问,共需安排几场比赛?( )
【解析】 根据公式,第一阶段中,32人被平均分成8组,每组4个人,则每组单循环赛产生前2名需要进行的比赛场次是:4×(4-1)÷2=6(场),8组共48场;第二阶段中,有2×8=16人进行淘汰赛,决出冠军,则需要比赛的场次就是:参赛选手的人数-1,即15场。最后,总的比赛场次是48+15=63(场)。
4. 某学校承办系统篮球比赛,有12个队报名参加,比赛采用混合制,即第一阶段采用分2组进行单循环比赛,每组前3名进入第二阶段;第二阶段采用淘汰赛,决出前三名。如果一天只能进行2场比赛,每6场需要休息一天,请问全部比赛共需几天才能完成?( )
【解析】 根据公式,第一阶段12个队分成2组,每组6个人,则每组单循环赛产生前2名需要进行的比赛场次是:6×(6-1)÷2=15(场),2组共30场;第二阶段中,有2×3=6人进行淘汰赛,决出前三名,则需要比赛的场次就是:参赛选手的人数,即6场,最后,总的比赛场次是30+6=36(场)。 又,“一天只能进行2场比赛”,则36场需要18天;“每6场需要休息一天”,则36场需要休息36÷6-1=5(天),所以全部比赛完成共需18+5=23(天)。

比赛赛制
  在正规的大型赛事中,我们经常听到淘汰赛或者循环赛的提法,实际上这是两种不同的赛制,选手们需要根据事前确定的赛制规则进行比赛。我们先谈谈两者的概念和区别。
  1. 循环赛:就是参加比赛的各队之间,轮流进行比赛,做到队队见面相遇,根据各队胜负的场次积分多少决定名次。
  循环赛包括单循环和双循环。
  单循环是所有参加比赛的队均能相遇一次,最后按各队在全部比赛中的积分、得失分率排列名次。如果参赛选手数目不多,而且时间和场地都有保证,通常都采用这种竞赛方法。
  单循环比赛场次计算的公式为: 由于单循环赛是任意两个队之间的一场比赛,实际上是一个组合题目,就是C(参赛选手数,2),即:单循环赛比赛场次数=参赛选手数×(参赛选手数-1 )/2
   双循环是所有参加比赛的队均能相遇两次,最后按各队在两个循环的全部比赛中的积分、得失分率排列名次。如果参赛选手数目少,或者打算创造更多的比赛机会,通常采用双循环的比赛方法。
  双循环比赛场次计算的公式为:由于双循环赛是任意两队之间比赛两次,因此比赛总场数是单循环赛的2倍,即:双循环赛比赛场次数=参赛选手数×(参赛选手数-1 )
  2. 淘汰赛:就是所有参加比赛的队按照预先编排的比赛次序、号码位置,每两队之间进行一次第一轮比赛,胜队再进入下一轮比赛,负队便被淘汰,失去继续参加比赛的资格,能够参加到最后一场比赛的队,胜队为冠军,负队为亚军。
   淘汰赛常需要求决出冠(亚)军的场次,以及前三(四)名的场次。
  决出冠(亚)军的比赛场次计算的公式为:由于最后一场比赛是决出冠(亚)军,若是n个人参赛,只要淘汰掉n-1个人,就可以了,所以比赛场次是n-1场,即:淘汰出冠(亚)军的比赛场次=参赛选手数-1;
  决出前三(四)名的比赛场次计算的公式为:决出冠亚军之后,还要在前四名剩余的两人中进行季军争夺赛,也就是需要比只决出冠(亚)军再多进行一场比赛,所以比赛场次是n场,即:淘汰出前三(四)名的比赛场次=参赛选手数。


手机版|APP|sitemap|QZZN ( 京ICP备11040856号-1|京公网安备11010802022760 )

Powered by Discuz! , GMT+8, 17-6-25 08:14 0.046004 s, 9 queries , M On.

© 2005-2017 QZZN , 转载、商业使用需取得授权 联系我们

快速回复 返回顶部 返回列表